Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 14: 1155129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020460

RESUMEN

Introduction: The striped ambrosia beetle Trypodendron lineatum (Coleoptera, Curculionidae, Scolytinae) is a major forest pest in the Holarctic region. It uses an aggregation pheromone and host and non-host volatiles to locate suitable host trees, primarily stressed or dying conifer trees. The beetles bore into the xylem and inoculate spores of their obligate fungal mutualist Phialophoropsis ferruginea inside their excavated egg galleries, with the fungus serving as the main food source for the developing larvae. Olfactory sensory neuron (OSN) responses to pheromones and host volatiles are poorly understood in T. lineatum and other ambrosia beetles, and nothing is known about potential responses to fungal volatiles. Methods: We screened responses of OSNs present in 170 antennal olfactory sensilla using single sensillum recordings (SSR) and 57 odor stimuli, including pheromones, host and non-host compounds, as well as volatiles produced by P. ferruginea and fungal symbionts of other scolytine beetles. Results and Discussion: Thirteen OSN classes were characterized based on their characteristic response profiles. An OSN class responding to the aggregation pheromone lineatin was clearly the most abundant on the antennae. In addition, four OSN classes responded specifically to volatile compounds originating from the obligate fungal mutualist and three responded to non-host plant volatiles. Our data also show that T. lineatum has OSN classes tuned to pheromones of other bark beetles. Several OSN classes showed similar response profiles to those previously described in the sympatric bark beetle Ips typographus, which may reflect their shared ancestry.

2.
Mol Ecol ; 31(13): 3693-3707, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35532927

RESUMEN

Insects are able to detect a plethora of olfactory cues using a divergent family of odorant receptors (ORs). Despite the divergent nature of this family, related species frequently express several evolutionarily conserved OR orthologues. In the largest order of insects, Coleoptera, it remains unknown whether OR orthologues have conserved or divergent functions in different species. Using HEK293 cells, we addressed this question through functional characterization of two groups of OR orthologues in three species of the Curculionidae (weevil) family, the conifer-feeding bark beetles Ips typographus L. ("Ityp") and Dendroctonus ponderosae Hopkins ("Dpon") (Scolytinae), and the pine weevil Hylobius abietis L. ("Habi"; Molytinae). The ORs of H. abietis were annotated from antennal transcriptomes. The results show highly conserved response specificities, with one group of orthologues (HabiOR3/DponOR8/ItypOR6) responding exclusively to 2-phenylethanol (2-PE), and the other group (HabiOR4/DponOR9/ItypOR5) responding to angiosperm green leaf volatiles (GLVs). Both groups of orthologues belong to the coleopteran OR subfamily 2B, and share a common ancestor with OR5 in the cerambycid Megacyllene caryae, also tuned to 2-PE, suggesting a shared evolutionary history of 2-PE receptors across two beetle superfamilies. The detected compounds are ecologically relevant for conifer-feeding curculionids, and are probably linked to fitness, with GLVs being used to avoid angiosperm nonhost plants, and 2-PE being important for intraspecific communication and/or playing a putative role in beetle-microbe symbioses. To our knowledge, this study is the first to reveal evolutionary conservation of OR functions across several beetle species and hence sheds new light on the functional evolution of insect ORs.


Asunto(s)
Receptores Odorantes , Tracheophyta , Gorgojos , Animales , Células HEK293 , Humanos , Odorantes , Receptores Odorantes/genética , Gorgojos/genética
3.
Insect Biochem Mol Biol ; 141: 103708, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973420

RESUMEN

Sex pheromones facilitate species-specific sex communication within the Lepidoptera. They are detected by specialised pheromone receptors (PRs), most of which to date fall into a single monophyletic receptor lineage (frequently referred to as "the PR clade") within the odorant receptor (OR) family. Here we investigated PRs of the invasive horticultural pest, Epiphyas postvittana, commonly known as the light brown apple moth. Ten candidate PRs were selected, based on their male-biased expression in antennae or their relationship to the PR clade, for functional assessment in both HEK293 cells and Xenopus oocytes. Of these, six ORs responded to compounds that include components of the E. postvittana ('Epos') sex pheromone blend or compounds that antagonise sex pheromone attraction. In phylogenies, four of the characterised receptors (EposOR1, 6, 7 and 45) fall within the PR clade and two other male-biased receptors (EposOR30 and 34) group together well outside the PR clade. This new clade of pheromone receptors includes the receptor for (E)-11-tetradecenyl acetate (EposOR30), which is the main component of the sex pheromone blend for this species. Interestingly, receptors of the two clades do not segregate by preference for compounds associated with behavioural response (agonist or antagonist), isomer type (E or Z) or functional group (alcohol or acetate), with examples of each scattered across both clades. Phylogenetic comparison with PRs from other species supports the existence of a second major clade of lepidopteran ORs including, EposOR30 and 34, that has been co-opted into sex pheromone detection in the Lepidoptera. This second clade of sex pheromone receptors has an origin that likely predates the split between the major lepidopteran families.


Asunto(s)
Mariposas Nocturnas/genética , Receptores de Feromonas/genética , Atractivos Sexuales/genética , Animales , Femenino , Células HEK293 , Humanos , Masculino , Filogenia , Receptores de Feromonas/clasificación
4.
Front Cell Neurosci ; 15: 744401, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552471

RESUMEN

Insect odorant receptor (OR) genes are routinely expressed in Human Embryonic Kidney (HEK) 293 cells for functional characterization ("de-orphanization") using transient or stable expression. However, progress in this research field has been hampered because some insect ORs are not functional in this system, which may be due to insufficient protein levels. We investigated whether codon optimization of insect OR sequences for expression in human cells could facilitate their functional characterization in HEK293 cells with stable and inducible expression. We tested the olfactory receptor co-receptor (Orco) proteins from the bark beetles Ips typographus ("Ityp") and Dendroctonus ponderosae ("Dpon"), and six ItypORs previously characterized in Xenopus laevis oocytes and/or HEK cells. Western blot analysis indicated that codon optimization yielded increased cellular protein levels for seven of the eight receptors. Our experimental assays demonstrated that codon optimization enabled functional characterization of two ORs (ItypOR25 and ItypOR29) which are unresponsive when expressed from wildtype (non-codon optimized) genes. Similar to previous Xenopus oocyte recordings, ItypOR25 responded primarily to the host/conifer monoterpene (+)-3-carene. ItypOR29 responded primarily to (+)-isopinochamphone and similar ketones produced by fungal symbionts and trees. Codon optimization also resulted in significantly increased responses in ItypOR49 to its pheromone ligand (R)-(-)-ipsdienol, and improved responses to the Orco agonist VUAA1 in ItypOrco. However, codon optimization did not result in functional expression of DponOrco, ItypOR23, ItypOR27, and ItypOR28 despite higher protein levels as indicated by Western blots. We conclude that codon optimization may enable or improve the functional characterization of insect ORs in HEK cells, although this method is not sufficient for all ORs that are not functionally expressed from wildtype genes.

5.
Mol Biol Evol ; 38(11): 4934-4947, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34293158

RESUMEN

Insects detect odors using an array of odorant receptors (ORs), which may expand through gene duplication. How and which new functions may evolve among related ORs within a species remain poorly investigated. We addressed this question by functionally characterizing ORs from the Eurasian spruce bark beetle Ips typographus, in which physiological and behavioral responses to pheromones, volatiles from host and nonhost trees, and fungal symbionts are well described. In contrast, knowledge of OR function is restricted to two receptors detecting the pheromone compounds (S)-(-)-ipsenol (ItypOR46) and (R)-(-)-ipsdienol (ItypOR49). These receptors belong to an Ips-specific OR-lineage comprising seven ItypORs. To gain insight into the functional evolution of related ORs, we characterized the five remaining ORs in this clade using Xenopus oocytes. Two receptors responded primarily to the host tree monoterpenes (+)-3-carene (ItypOR25) and p-cymene (ItypOR27). Two receptors responded to oxygenated monoterpenoids produced in larger relative amounts by the beetle-associated fungi, with ItypOR23 specific for (+)-trans-(1R, 4S)-4-thujanol, and ItypOR29 responding to (+)-isopinocamphone and similar ketones. ItypOR28 responded to the pheromone E-myrcenol from the competitor Ips duplicatus. Overall, the OR responses match well with those of previously characterized olfactory sensory neuron classes except that neurons detecting E-myrcenol have not been identified. The characterized ORs are under strong purifying selection and demonstrate a shared functional property in that they all primarily respond to monoterpenoids. The variation in functional groups among OR ligands and their diverse ecological origins suggest that neofunctionalization has occurred early in the evolution of this OR-lineage following gene duplication.


Asunto(s)
Escarabajos , Receptores Odorantes , Animales , Escarabajos/genética , Monoterpenos , Feromonas , Corteza de la Planta , Receptores Odorantes/genética
6.
Insect Biochem Mol Biol ; 117: 103289, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31778795

RESUMEN

The Xenopus oocyte and the Human Embryonic Kidney (HEK) 293 cell expression systems are frequently used for functional characterization (deorphanization) of insect odorant receptors (ORs). However, the inherent characteristics of these heterologous systems differ in several aspects, which raises the question of whether the two systems provide comparable results, and how well the results correspond to the responses obtained from olfactory sensory neurons in vivo. Five candidate pheromone receptors were previously identified in the primitive moth Eriocrania semipurpurella (Esem) and their responses were characterized in HEK cells. We re-examined the responses of these five EsemORs in Xenopus oocytes. We showed that in both systems, EsemOR1 specifically responded to the plant volatile ß-caryophyllene. EsemOR3 responded stronger to the pheromone component (S,Z)-6-nonen-2-ol than to its enantiomer (R,Z)-6-nonen-2-ol, the second pheromone component. However, EsemOR3 also responded secondarily to the plant volatile ß-caryophyllene in the oocyte system, but not in the HEK cell system. EsemOR4 was unresponsive in the HEK cells, but responded primarily to (R,Z)-6-nonen-2-ol followed by (S,Z)-6-nonen-2-ol in the oocytes, representing a discovery of a new pheromone receptor in this species. EsemOR5 was broadly tuned in both systems, but the rank order among the most active pheromone compounds and antagonists was different. EsemOR6 showed no response to any compound in either system. We compared the results obtained in the two different heterologous systems with the activity previously recorded in vivo, and performed in situ hybridization to localize the expression of these OR genes in the antennae. In spite of similar results overall, differences in OR responses between heterologous expression systems suggest that conclusions about the function of individual ORs may differ depending on the system used for deorphanization.


Asunto(s)
Proteínas de Insectos/metabolismo , Mariposas Nocturnas/metabolismo , Receptores Odorantes/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Células HEK293 , Humanos , Masculino , Oocitos , Xenopus laevis/metabolismo
7.
Front Physiol ; 9: 1365, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319455

RESUMEN

The chemosensory gene families of insects encode proteins that are crucial for host location, mate finding, oviposition, and avoidance behaviors. The insect peripheral chemosensory system comprises odorant receptors (ORs), gustatory receptors (GRs), ionotropic receptors (IRs), odorant binding proteins (OBPs), chemosensory proteins (CSPs), and sensory neuron membrane proteins (SNMPs). These protein families have been identified from a large number of insect species, however, they still remain unidentified from several taxa that could provide important clues to their evolution. These taxa include older lepidopteran lineages and the sister order of Lepidoptera, Trichoptera (caddisflies). Studies of these insects should improve evolutionary analyses of insect chemoreception, and in particular shed light on the origin of certain lepidopteran protein subfamilies. These include the pheromone receptors (PRs) in the "PR clade", the pheromone binding proteins (PBPs), general odorant binding proteins (GOBPs), and certain presumably Lepidoptera-specific IR subfamilies. Hence, we analyzed antennal transcriptomes from Rhyacophila nubila (Trichoptera), Eriocrania semipurpurella, and Lampronia capitella (representing two old lepidopteran lineages). We report 37 ORs, 17 IRs, 9 GRs, 30 OBPs, 7 CSPs, and 2 SNMPs in R. nubila; 37 ORs, 17 IRs, 3 GRs, 23 OBPs, 14 CSPs, and 2 SNMPs in E. semipurpurella; and 53 ORs, 20 IRs, 5 GRs, 29 OBPs, 17 CSPs, and 3 SNMPs in L. capitella. We identified IR members of the "Lepidoptera-specific" subfamilies IR1 and IR87a also in R. nubila, demonstrating that these IRs also occur in Trichoptera. Members of the GOBP subfamily were only found in the two lepidopterans. ORs grouping within the PR clade, as well as PBPs, were only found in L. capitella, a species that in contrast to R. nubila and E. semipurpurella uses a so-called Type I pheromone similar to the pheromones of most species of the derived Lepidoptera (Ditrysia). Thus, in addition to providing increased coverage for evolutionary analyses of chemoreception in insects, our findings suggest that certain subfamilies of chemosensory genes have evolved in parallel with the transition of sex pheromone types in Lepidoptera. In addition, other chemoreceptor subfamilies show a broader taxonomic occurrence than hitherto acknowledged.

8.
Insect Biochem Mol Biol ; 100: 39-47, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29894821

RESUMEN

The odorant receptors (ORs) of insects are crucial for host and mate recognition. In moths (Lepidoptera), specialized ORs are involved in male detection of the sex pheromone produced by females. Most moth sex pheromones are C10-C18 acetates, alcohols, and aldehydes (Type I pheromones), and most pheromone receptors (PRs) characterized to date are from higher Lepidoptera (Ditrysia), responding to these types of compounds. With few exceptions, functionally characterized PRs fall into what has been called the "PR-clade", which also contains receptors that have yet to be characterized. While it has been suggested that moth PRs have evolved from plant odor-detecting ORs, it is not known when receptors for Type I pheromones arose. This is largely due to a lack of functionally characterized PRs from non-ditrysian Lepidoptera. The currant shoot borer moth, Lampronia capitella (Prodoxidae), belongs to a non-ditrysian lineage, and uses Type I pheromone compounds. We identified 53 ORs from antennal transcriptomes of this species, and analyzed their phylogenetic relationships with known lepidopteran ORs. Using a HEK293 cell-based assay, we showed that three of the LcapORs with male-biased expression (based on FPKM values) respond to Type I pheromone compounds. Two of them responded to pheromone components of L. capitella and one to a structurally related compound. These PRs are the first from a non-ditrysian moth species reported to respond to Type I compounds. They belong to two of the more early-diverging subfamilies of the PR-clade for which a role in pheromone detection had not previously been demonstrated. Hence, our definition of the monophyletic lepidopteran PR-clade includes these receptors from a non-ditrysian species, based on functional support.


Asunto(s)
Antenas de Artrópodos/metabolismo , Mariposas Nocturnas/metabolismo , Receptores Odorantes/metabolismo , Receptores de Feromonas/metabolismo , Animales , Femenino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Mariposas Nocturnas/genética , Filogenia , Receptores Odorantes/genética , Receptores de Feromonas/genética
9.
Micron ; 111: 9-18, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29804006

RESUMEN

The antenna is the main sensory organ of insects, housing different types of sensilla dedicated to detect chemical cues, motion, humidity and temperature. Sensilla are divided into different types based on their wall structure and morphology. Among the olfactory sensilla, there is an enormous variation in the numbers and morphological types present in different insect taxa. The reasons for this variation remain obscure, though there may be a correlation between sensillum morphology and the characteristics of the stimulus that the olfactory sensory neurons inside the sensillum detect. Here, we report the first comparative analysis of the morphology and ultrastructure of sensilla from Rhyacophila nubila (Rhyacophilidae: Trichoptera) and three species of Lepidoptera, Eriocrania semipurpurella (Eriocraniidae), Lampronia capitella (Prodoxidae), and Bicyclus anynana (Nymphalidae), which use different chemical types of pheromones. Our results, together with a thorough literature review, suggest a shift in major types of olfactory sensilla, from a high proportion of sensilla placodea or auricillica in Trichoptera and the most basal moth lineages (including Eriocraniidae), respectively, to sensilla trichodea in the more derived Lepidoptera (including Prodoxidae and the Ditrysia clade), which parallels the change in the types of sex pheromones used.


Asunto(s)
Mariposas Diurnas/anatomía & histología , Mariposas Nocturnas/anatomía & histología , Sensilos/anatomía & histología , Sensilos/ultraestructura , Animales , Mariposas Diurnas/clasificación , Femenino , Masculino , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Mariposas Nocturnas/clasificación , Feromonas/metabolismo , Sensilos/fisiología , Olfato/fisiología
10.
Mol Biol Evol ; 34(11): 2733-2746, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126322

RESUMEN

Pheromone receptors (PRs) are essential in moths to detect sex pheromones for mate finding. However, it remains unknown from which ancestral proteins these specialized receptors arose. The oldest lineages of moths, so-called non-ditrysian moths, use short-chain pheromone components, secondary alcohols, or ketones, so called Type 0 pheromones that are similar to many common plant volatiles. It is, therefore, possible that receptors for these ancestral pheromones evolved from receptors detecting plant volatiles. Hence, we identified the odorant receptors (ORs) from a non-ditrysian moth, Eriocrania semipurpurella (Eriocraniidae, Lepidoptera), and performed functional characterization of ORs using HEK293 cells. We report the first receptors that respond to Type 0 pheromone compounds; EsemOR3 displayed highest sensitivity toward (2S, 6Z)-6-nonen-2-ol, whereas EsemOR5 was most sensitive to the behavioral antagonist (Z)-6-nonen-2-one. These receptors also respond to plant volatiles of similar chemical structures, but with lower sensitivity. Phylogenetically, EsemOR3 and EsemOR5 group with a plant volatile-responding receptor from the tortricid moth Epiphyas postvittana (EposOR3), which together reside outside the previously defined lepidopteran PR clade that contains the PRs from more derived lepidopteran families. In addition, one receptor (EsemOR1) that falls at the base of the lepidopteran PR clade, responded specifically to ß-caryophyllene and not to any other additional plant or pheromone compounds. Our results suggest that PRs for Type 0 pheromones have evolved from ORs that detect structurally-related plant volatiles. They are unrelated to PRs detecting pheromones in more derived Lepidoptera, which, in turn, also independently may have evolved a novel function from ORs detecting plant volatiles.


Asunto(s)
Lepidópteros/genética , Receptores de Feromonas/genética , Atractivos Sexuales/genética , Animales , Proteínas Portadoras/metabolismo , Evolución Molecular , Células HEK293/metabolismo , Humanos , Cetonas/metabolismo , Mariposas Nocturnas/genética , Feromonas/metabolismo , Filogenia , Sesquiterpenos Policíclicos , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores de Feromonas/metabolismo , Sesquiterpenos/metabolismo , Atractivos Sexuales/metabolismo
11.
J Insect Physiol ; 59(5): 542-51, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23524066

RESUMEN

The blue gum psyllid, Ctenarytaina eucalypti (Sternorrhyncha: Psyllidae), is an economic threat to Eucalyptus subgenus Symphyomyrtus plantations worldwide. To date, no generally applicable control method is available and the potential for semiochemical-based monitoring or control methods has not yet been investigated. Hence, we conducted the first study on the olfactory sense of C. eucalypti, investigating the specificity and sensitivity of its olfactory sensory neurons (OSNs) to host plant volatiles using single sensillum recordings (SSR). Synthetic compounds were selected from published identifications of Eucalyptus volatiles and after analysis of headspace collections from Eucalyptus cordata. The antenna of C. eucalypti carries four cavities containing olfactory sensilla (S1-S4). Our recordings revealed that each of these sensilla houses three OSNs that could be distinguished electrophysiologically based on spike amplitude differences (A, B, and C neuron with large, intermediate, and small amplitude, respectively). The A neuron in sensillum S1 responded primarily to ß-caryophyllene and weaker to ß-ocimene, whereas the accompanying B-neuron responded strongly and very specifically to linalool. Furthermore, the B-neuron in both S2 and S3 responded strongly to 1-hexanol, Z3-hexenol, and Z3-hexenyl acetate. OSNs in S4 responded only weakly to a few of the synthetic compounds. Response thresholds in strongly responding OSNs to putative key compounds were close to the 1ng dose on the filter paper and responses exhibited a phasic-tonic profile irrespective of compound dose. C. eucalypti may use the physiologically active compounds for long-range host finding. Future laboratory and field experiments will reveal whether plant volatiles can be used in the management and monitoring of C. eucalypti.


Asunto(s)
Eucalyptus/química , Hemípteros/fisiología , Neuronas Receptoras Olfatorias/fisiología , Sensilos/fisiología , Olfato/fisiología , Compuestos Orgánicos Volátiles/análisis , Animales , Femenino , Especificidad del Huésped , Masculino , Odorantes , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...